COMPUTING THE BRAID MONODROMY OF COMPLETELY REDUCIBLE n-GONAL CURVES

نویسنده

  • MEHMET E. AKTAS
چکیده

Braid monodromy is an important tool for computing invariants of curves and surfaces. In this paper, the rectangular braid diagram (RBD) method is proposed to compute the braid monodromy of a completely reducible n-gonal curve, i.e. the curves in the form (y−y1(x))...(y−yn(x)) = 0 where n ∈ Z+ and yi ∈ C[x]. Also, an algorithm is presented to compute the Alexander polynomial of these curve complements using Burau representations of braid groups. Examples for each computation are provided.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Regeneration of a 5-point

The braid monodromy factorization of the branch curve of a surface of general type is known to be an invariant that completely determines the diffeomorphism type of the surface (see [2]). Calculating this factorization is of high technical complexity; computing the braid monodromy factorization of branch curves of surfaces uncovers new facts and invariants of the surfaces. Since finding the bra...

متن کامل

Braid Monodromy of Special Curves

In this article, we compute the braid monodromy of two algebraic curves defined over R. These two curves are of complex level not bigger than 6, and they are unions of lines and conics. We use two different techniques for computing their braid monodromies. These results will be applied to computations of fundamental groups of their complements in C and CP.

متن کامل

New invariants for surfaces

We define a new invariant of surfaces, stable on connected components of moduli spaces of surfaces. The new invariant comes from the polycyclic structure of the fundamental group of the complement of a branch curve. We compute this invariant for a few examples. Braid monodromy factorizations related to curves is a first step in computing the fundamental group of the complement of the curve, and...

متن کامل

Braid Monodromy Type and Rational Transformations of Plane Algebraic Curves

We combine the newly discovered technique, which computes explicit formulas for the image of an algebraic curve under rational transformation, with techniques that enable to compute braid monodromies of such curves. We use this combination in order to study properties of the braid monodromy of the image of curves under a given rational transformation. A description of the general method is give...

متن کامل

A Polynomial Invariant for Plane Curve Complements: Krammer Polynomials

We use the Krammer representation of the braid group in Libgober’s invariant and construct a new multivariate polynomial invariant for curve complements: Krammer polynomial. We show that the Krammer polynomial of an essential braid is equal to zero. We also compute the Krammer polynomials of some certain n-gonal curves.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016